It's clear that 2026 will be the "RL" big year. How AI labs use productive data in real-time (almost) training without comprising user experience , data privacy and evaluate is even a bigger questions. CC is rising from there.
OpenAI's blog () points out that today’s language models hallucinate because training and evaluation reward guessing instead of admitting uncertainty. This raises a natural question: can we reduce hallucination without hurting utility?🤔 On-policy RL with our Binary Retrieval-Augmented Reward (RAR) can improve factuality (40% reduction in hallucination) while preserving model utility (win rate and accuracy) of fully trained, capable LMs like Qwen3-8B. [1/n]
1,76 tn
8
Innehållet på den här sidan tillhandahålls av tredje part. Om inte annat anges är OKX inte författare till den eller de artiklar som citeras och hämtar inte någon upphovsrätt till materialet. Innehållet tillhandahålls endast i informationssyfte och representerar inte OKX:s åsikter. Det är inte avsett att vara ett godkännande av något slag och bör inte betraktas som investeringsrådgivning eller en uppmaning att köpa eller sälja digitala tillgångar. I den mån generativ AI används för att tillhandahålla sammanfattningar eller annan information kan sådant AI-genererat innehåll vara felaktigt eller inkonsekvent. Läs den länkade artikeln för mer detaljer och information. OKX ansvarar inte för innehåll som finns på tredje parts webbplatser. Innehav av digitala tillgångar, inklusive stabila kryptovalutor och NFT:er, innebär en hög grad av risk och kan fluktuera kraftigt. Du bör noga överväga om handel med eller innehav av digitala tillgångar är lämpligt för dig mot bakgrund av din ekonomiska situation.