Pytest for LLM Apps is finally here!
DeepEval turns LLM evals into a two-line test suite to help you identify the best models, prompts, and architecture for AI workflows (including MCPs).
Learn the limitations of G-Eval and an alternative to it in the explainer below:

Most LLM-powered evals are BROKEN!
These evals can easily mislead you to believe that one model is better than the other, primarily due to the way they are set up.
G-Eval is one popular example.
Here's the core problem with LLM eval techniques and a better alternative to them:
Typical evals like G-Eval assume you’re scoring one output at a time in isolation, without understanding the alternative.
So when prompt A scores 0.72 and prompt B scores 0.74, you still don’t know which one’s actually better.
This is unlike scoring, say, classical ML models, where metrics like accuracy, F1, or RMSE give a clear and objective measure of performance.
There’s no room for subjectivity, and the results are grounded in hard numbers, not opinions.
LLM Arena-as-a-Judge is a new technique that addresses this issue with LLM evals.
In a gist, instead of assigning scores, you just run A vs. B comparisons and pick the better output.
Just like G-Eeval, you can define what “better” means (e.g., more helpful, more concise, more polite), and use any LLM to act as the judge.
LLM Arena-as-a-Judge is actually implemented in @deepeval (open-source with 12k stars), and you can use it in just three steps:
- Create an ArenaTestCase, with a list of “contestants” and their respective LLM interactions.
- Next, define your criteria for comparison using the Arena G-Eval metric, which incorporates the G-Eval algorithm for a comparison use case.
- Finally, run the evaluation and print the scores.
This gives you an accurate head-to-head comparison.
Note that LLM Arena-as-a-Judge can either be referenceless (like shown in the snippet below) or reference-based. If needed, you can specify an expected output as well for the given input test case and specify that in the evaluation parameters.
Why DeepEval?
It's 100% open-source with 12k+ stars and implements everything you need to define metrics, create test cases, and run evals like:
- component-level evals
- multi-turn evals
- LLM Arena-as-a-judge, etc.
Moreover, tracing LLM apps is as simple as adding one Python decorator.
And you can run everything 100% locally.
I have shared the repo in the replies.

2,87 mil
7
El contenido de esta página lo proporcionan terceros. A menos que se indique lo contrario, OKX no es el autor de los artículos citados y no reclama ningún derecho de autor sobre los materiales. El contenido se proporciona únicamente con fines informativos y no representa las opiniones de OKX. No pretende ser un respaldo de ningún tipo y no debe ser considerado como un consejo de inversión o una solicitud para comprar o vender activos digitales. En la medida en que la IA generativa se utiliza para proporcionar resúmenes u otra información, dicho contenido generado por IA puede ser inexacto o incoherente. Lee el artículo vinculado para obtener más detalles e información. OKX no es responsable del contenido alojado en sitios de terceros. El holding de activos digitales, incluyendo stablecoins y NFT, implican un alto grado de riesgo y pueden fluctuar en gran medida. Debes considerar cuidadosamente si el trading o holding de activos digitales es adecuado para ti a la luz de tu situación financiera.