20h în urmă
Pytest for LLM Apps is finally here! DeepEval turns LLM evals into a two-line test suite to help you identify the best models, prompts, and architecture for AI workflows (including MCPs). Learn the limitations of G-Eval and an alternative to it in the explainer below:
1z în urmă
Most LLM-powered evals are BROKEN! These evals can easily mislead you to believe that one model is better than the other, primarily due to the way they are set up. G-Eval is one popular example. Here's the core problem with LLM eval techniques and a better alternative to them: Typical evals like G-Eval assume you’re scoring one output at a time in isolation, without understanding the alternative. So when prompt A scores 0.72 and prompt B scores 0.74, you still don’t know which one’s actually better. This is unlike scoring, say, classical ML models, where metrics like accuracy, F1, or RMSE give a clear and objective measure of performance. There’s no room for subjectivity, and the results are grounded in hard numbers, not opinions. LLM Arena-as-a-Judge is a new technique that addresses this issue with LLM evals. In a gist, instead of assigning scores, you just run A vs. B comparisons and pick the better output. Just like G-Eeval, you can define what “better” means (e.g., more helpful, more concise, more polite), and use any LLM to act as the judge. LLM Arena-as-a-Judge is actually implemented in @deepeval (open-source with 12k stars), and you can use it in just three steps: - Create an ArenaTestCase, with a list of “contestants” and their respective LLM interactions. - Next, define your criteria for comparison using the Arena G-Eval metric, which incorporates the G-Eval algorithm for a comparison use case. - Finally, run the evaluation and print the scores. This gives you an accurate head-to-head comparison. Note that LLM Arena-as-a-Judge can either be referenceless (like shown in the snippet below) or reference-based. If needed, you can specify an expected output as well for the given input test case and specify that in the evaluation parameters. Why DeepEval? It's 100% open-source with 12k+ stars and implements everything you need to define metrics, create test cases, and run evals like: - component-level evals - multi-turn evals - LLM Arena-as-a-judge, etc. Moreover, tracing LLM apps is as simple as adding one Python decorator. And you can run everything 100% locally. I have shared the repo in the replies.
6,77 K
56
Conținutul de pe această pagină este furnizat de terți. Dacă nu se menționează altfel, OKX nu este autorul articolului citat și nu revendică niciun drept intelectual pentru materiale. Conținutul este furnizat doar pentru informare și nu reprezintă opinia OKX. Nu este furnizat pentru a fi o susținere de nicio natură și nu trebuie să fie considerat un sfat de investiție sau o solicitare de a cumpăra sau vinde active digitale. În măsura în care AI-ul de generare este utilizat pentru a furniza rezumate sau alte informații, astfel de conținut generat de AI poate să fie inexact sau neconsecvent. Citiți articolul asociat pentru mai multe detalii și informații. OKX nu răspunde pentru conținutul găzduit pe pagini terțe. Deținerile de active digitale, inclusiv criptomonedele stabile și NFT-urile, prezintă un grad ridicat de risc și pot fluctua semnificativ. Trebuie să analizați cu atenție dacă tranzacționarea sau deținerea de active digitale este adecvată pentru dumneavoastră prin prisma situației dumneavoastră financiare.